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1 Itis given that f(x) = In(1 + cos x).

(i) Find the exact values of f(0), f'(0) and £"(0). [4]
(ii) Hence find the first two non-zero terms of the Maclaurin series for f(x). [2]
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The diagram shows parts of the curves with equations y = cos™ x and y = %sin_l x, and their point of
intersection P.
(i) Verify that the coordinates of P are (%\/5 én) [2]
(ii) Find the gradient of each curve at P. [3]
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The diagram shows the curve with equation y = v/1 + x?, for 2 < x < 3. The region under the curve
between these limits has area A.

(i) Explain why 3 <A < v28. [2]
(ii) The region is divided into 5 strips, each of width 0.2. By using suitable rectangles, find improved

lower and upper bounds between which A lies. Give your answers correct to 3 significant figures.

(4]
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3

4  The equation of a curve, in polar coordinates, is

1

1
27r<9<2n.

r=1+2sec@, for —

(i) Find the exact area of the region bounded by the curve and the lines 8 = 0 and 8 = %n’. [5]

[The result I sec 8d0 = In|sec 6 + tan 8| may be assumed.]

(ii) Show that a cartesian equation of the curve is (x — 2)Vx? + y* = x. (3]

[
»

T

The diagram shows the curve with equation y = xe™ + 1. The curve crosses the x-axis at x = «.
(i) Use differentiation to show that the x-coordinate of the stationary point is 1. 2]
o is to be found using the Newton-Raphson method, with f(x) = xe™ + 1.

(ii) Explain why this method will not converge to « if an initial approximation .x  is chosen such that

x, > 1. [2]

(iii) Use this method, with a first approximation x, = 0, to find the next three approximations x,, x;

and X, Find «, correct to 3 decimal places. [5]

22~ 11x -6
6  The equation of a curve isy::—x——x—

x -1
(i) Find the equations of the asymptotes of the curve. [3]
(i) Show that y takes all real values. [5]
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7  Itis given that, for integers n > 1,

1
= — dx.
1 2\
¢ 0 (1 +x2)

1
2
. . . e x

(i) Use integration by parts to show that/, =2 " +2n m 3]
(ii) Show that2nl  =27"+(2n-1)I. [3]
(iii) Find I2 in terms of . [3]

8 (i) By using the definition of sinhx in terms of e* and e™, show that
sinh®x = % sinh 3x — % sinh x. [4]

(ii) Find the range of values of the constant k for which the equation

sinh 3x = ksinhx

has real solutions other than x = 0. [3]

(iii) Given that k = 4, solve the equation in part (ii), giving the non-zero answers in logarithmic form.

[3]
9 (i) Prove that d (cosh™' x) = 1 [3]
dx Vo )
1
(ii) Hence, or otherwise, find —— dx. [2]
Vax- -1
(iii) By means of a suitable substitution, find J Vax? — 1 dx. [6]
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1 @
(i)
2 ()
(i)
3 @
(i)
4 (@
(i)

Get f'(x) = £ sin x/(1+cos x) Ml
Get f "(x) using quotient/product rule ~ M1
Get f(0) =In2, £'(0) =0, {'(0) = -1 B1
Al
Attempt to use Maclaurin correctly Ml
GetIn2 - Vax’ Al
Clearly verify in y = cos™'x B1
Clearly verify in y = V4sin"'x Bl
SR
Write down at least one correct diff’al M1
Get gradient of -2 Al
Get gradient of 1 Al
Get y- values of 3 and V28 Bl

Show/explain areas of two rectangles equal

y- value x 1, and relate to 4 B1
Show 4>0.2(N(142°) + V(1+2.2%) + ...
N(1+2.83)) Ml
= 3.87(28) Al
Show A<0.2(N(142.2%) + V(1+2.4%) + ...
A N1+3%) M1
=4.33(11)<4.34 Al
Correct formula with correct » M1
Expand 7 as A + Bsect) + Csec?0 Ml
Get C tanf Bl
Use correct limits in their answer M1
Limits to /11 + 2 In(¥3) + 2%/ Al
Use x=r cosf) and 1> = x*+ )* Bl
Eliminate » and 6 M1
Get (x — 2N +)%) =x Al

19

Reasonable attempt at chain at any stage
Reasonable attempt at quotient/product
Any one correct from correct working
All three correct from correct working

Using their values in af(0)+bf (0)x+cf"(0)x%;
may be implied
From their values; must be quadratic

i.e. x=14\3, y=cos™' (4\3)='/¢m, or similar
Or solve cos y =sin 2y
Allow one Bl if not sufficiently clear detail

Or reasonable attempt to derive; allow +
cao
cao

Diagram may be used

Clear areas attempted below curve (5 values)
To min. of 3 s.f.

Clear areas attempted above curve (5 values)
To min. of 3 s.f.

May be implied
Allow B=0

Must be 3 terms
AEEF; simplified

Or derive polar form from given equation
Use their definitions
A.G.
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(i)

(iii)

(i)

(i)

(i)

(iii)

Mark Scheme

Attempt use of product rule
Clearly get x =1

Explain use of tangent for next approx.
Tangents at successive approx. give x>1

Attempt correct use of N-R with their
derivative

Getxy =-1

Get —0.6839, -0.5775, (-0.5672...)
Continue until correct to 3 d.p.

Get —0.567

Attempt division/equate coeff.
Geta=2,b=-9
Derive/quote x = 1

Write as quadratic in x

Use b” > 4ac (for real x)

Get y* +14y +169 > 0

Attempt to justify positive/negative
Get (y+7)* +120 > 0 — true for all y

Get x(1+x%)™ - | x.(-n(1+x%) ™" 2x) dx
Accurate use of parts
Clearly get A.G.

Express x*as (1+x%) — 1
Get X = 1 -1
(1+x2)n+1 (1+x2)n (1+x2)n+1

Show I, = 2" +2n(l, — I,+1)
Tidy to A.G.
See 2L, =2"+1,

Work out /; = Vant
GetL =%+ Y%n

Ml
Al

Bl
Bl

M1
ALY
Al
Ml
Al

Ml
Al
Bl

Ml
Ml
Al
Ml
Al
SC

Ml
Al
B1

Bl
Ml
Al

Bl

Ml
Al
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Allow substitution of x=1

Not use of G.C. to show divergence
Relate to crossing x-axis; allow diagram

To 3 d.p. minimum
May be implied
cao

To lead to some ax+b (allow 5=0 here)
Must be equations

(2x*-x(1143)+(-6)=0)
Allow <, >

Complete the square/sketch

Attempt diff; quot./prod. rule M1
Attempt to solve dy/dx=0 M1
Show 2x* —4x + 17 = 0 has

no real roots e.g. b* —4ac <0 Al

Attempt to use no t.p. M1
Justify all y e.g. consider
asymptotes and approaches Al

Reasonable attempt at parts

Include use of limits seen

Justified
Clear attempt to use their first line above

Quote/derive tan'x
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8 ()
(i)
(iii)

9 (i)
(i)
(iii)

Mark Scheme

Use correct exponential for sinh x
Attempt to expand cube of this
Correct cubic

Clearly replace in terms of sinh

Replace and factorise
Attempt to solve for sinh’x
Get >3

Get x = sinh™'c
Replace in In equivalent
Repeat for negative root

Get sinh y ¥/g, =1

Replace sinh y = V(cosh?y— 1)
Justify positive grad. to A.G.

Get k cosh™2x
Get k=%

Sub. x = k cosh u

Replace all x to ) ki sinh’u du

Replace as | kx(cosh2u — 1) du
Integrate correctly

Attempt to replace u with x equivalent
Tidy to reasonable form

B1
Ml
Al
B1

Ml
Ml
Al

M1
AlY
AlY

SR

Ml

Al
B1

Ml
Al

M1
Al
Ml
ALY
Ml
Al
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Must be 4 terms

(Allow RHS— LHS or RHS = LHS
separately)

Or state sinh x# 0
(= Ya(k-3)) or for k and use sinh*x>0
Not >

(c=+%); allow sinh x = ¢

As In(a+\ */4); their x

May be given as neg. of first answer
(no need for x=0 implied)

Use of exponential definitions
Express as cubicine® =u  MIl
Factorise to (u-1)(u*-3u+1)=0A1
Solve for x =0, In(h £%) Al

Or equivalent; allow +
Allow use of In equivalent with Chain Rule
e.g. sketch

No need for ¢

Or exponential equivalent

No need for ¢

In their answer

cao (Yax\(4x® — 1) - V4 cosh™2x (+¢))



